Retinal ganglion cell distribution and spatial resolving power in deep-sea lanternfishes (Myctophidae).
نویسندگان
چکیده
Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.
منابع مشابه
Retinal specializations in the eyes of deep-sea teleosts
Although living beyond the penetration limits of sunlight, many deep-sea teleosts possess large eyes, lenses capable of accommodation, and various adaptations for increasing sensitivity and extending their visual field. However, little is known of the extent of the visual field and whether the spatial resolving power of the eye is constant across the retina. In order to examine whether these fi...
متن کاملSpectral tuning in the eyes of deep-sea lanternfishes (Myctophidae): a novel sexually dimorphic intra-ocular filter.
Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate....
متن کاملOntogenetic changes in retinal ganglion cell distribution and spatial resolving power in the brown-banded bamboo shark Chiloscyllium punctatum (Elasmobranchii).
The development of the visual system in anamniotic vertebrates is a continual process, allowing for ontogenetic changes in retinal topography and spatial resolving power. We examined the number and distribution of retinal ganglion cells in wholemounted retinae throughout the protracted embryonic development (∼5 months) of a chondrichthyan, i.e. the brown-banded bamboo shark Chiloscyllium puncta...
متن کاملThe Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae)
The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low lev...
متن کاملOntogenetic changes in retinal ganglion cell distribution and spatial resolving power in the brown-banded bamboo shark
1 2 The development of the visual system in anamniotic vertebrates is a continual process, 3 allowing for ontogenetic changes in retinal topography and spatial resolving power. We 4 examine the number and distribution of retinal ganglion cells in wholemounted retinae 5 throughout the protracted embryonic development (approx. five months) of a chondrichthyan, 6 the brown banded bamboo shark, Chi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain, behavior and evolution
دوره 84 4 شماره
صفحات -
تاریخ انتشار 2014